Sunday, January 24, 2010

Amplifier

Generally, an amplifier or simply amp, is any device that changes, usually increases, the amplitude of a signal. The relationship of the input to the output of an amplifier—usually expressed as a function of the input frequency—is called the transfer function of the amplifier, and the magnitude of the transfer function is termed the gain.

Gain

The gain of an amplifier is the ratio of output to input power or amplitude, and is usually measured in decibels. (When measured in decibels it is logarithmically related to the power ratio: G(dB)=10 log(Pout /(Pin)).

Bandwidth

The bandwidth (BW) of an amplifier is the range of frequencies for which the amplifier gives "satisfactory performance". The "satisfactory performance" may be different for different applications. However, a common and well-accepted metric are the half power points (i.e. frequency where the power goes down by half its peak value) on the power vs. frequency curve. Therefore bandwidth can be defined as the difference between the lower and upper half power points. This is therefore also known as the −3 dB bandwidth. Bandwidths (otherwise called "frequency responses") for other response tolerances are sometimes quoted (−1 dB, −6 dB etc.) or "plus or minus 1dB" (roughly the sound level difference people usually can detect).

Efficiency

Efficiency is a measure of how much of the input power is usefully applied to the amplifier's output.Class A amplifiers are very inefficient, in the range of 10–20% with a max efficiency of 25%. Class B amplifiers have a very high efficiency but are impractical because of high levels of distortion (See: Crossover distortion). In practical design, the result of a tradeoff is the class AB design. Modern Class AB amps are commonly between 35–55% efficient with a theoretical maximum of 78.5%. Commercially available Class D switching amplifiers have reported efficiencies as high as 90%. Amplifiers of Class C-F are usually known to be very high efficiency amplifiers.

Linearity

An ideal amplifier would be a totally linear device, but real amplifiers are only linear within certain practical limits. When the signal drive to the amplifier is increased, the output also increases until a point is reached where some part of the amplifier becomes saturated and cannot produce any more output; this is called clipping, and results in distotion.

Noise

This is a measure of how much noise is introduced in the amplification process. Noise is an undesirable but inevitable product of the electronic devices and components. The metric for noise performance of a circuit is Noise Factor. Noise Factor is the ratio of input signal to that of the output signal.

Output dynamic range

Output dynamic range is the range, usually given in dB, between the smallest and largest useful output levels. The lowest useful level is limited by output noise, while the largest is limited most often by distortion. The ratio of these two is quoted as the amplifier dynamic range. More precisely, if S = maximal allowed signal power and N = noise power, the dynamic range DR is DR = (S + N ) /N.

Slew rate

Slew rate is the maximum rate of change of output variable, usually quoted in volts per second (or microsecond). Many amplifiers are ultimately slew rate limited (typically by the impedance of a drive current having to overcome capacitive effects at some point in the circuit), which may limit the full power bandwidth to frequencies well below the amplifier's small-signal frequency response.

Rise time

The rise time, tr, of an amplifier is the time taken for the output to change from 10% to 90% of its final level when driven by a step input. For a Gaussian response system (or a simple RC roll off ), the rise time is approximated by:

tr * BW = 0.35, where tr is rise time in seconds and BW is bandwidth in Hz.

Settling time and ringing

Time taken for output to settle to within a certain percentage of the final value (say 0.1%). This is called the settle time, and is usually specified for oscilloscope vertical amplifiers and high accuracy measurement systems. Ringing refers to an output that cycles above and below its final value, leading to a delay in reaching final value quantified by the settling time above.

Overshoot

In response to a step input, the overshoot is the amount the output exceeds its final, steady-state value.

Stability factor

Stability is a major concern in RF and microwave amplifiers. The degree of an amplifier's stability can be quantified by a so-called stability factor. There are several different stability factors, such as the Stern stability factor and the Linvil stability factor, which specify a condition that must be met for the absolute stability of an amplifier in terms of its two port parameters.

No comments:

Post a Comment